DataSync(

A White Paper on Database Replication and Synchronization

Abstract

With the ever-increasing number of remote and mobile computers in use, an extensive amount of data collection and manipulation is done away from corporate sites. For this data to remain useful, it must be kept consistent with both the data in the central database and with data collected and manipulated by other mobile computers.

This paper presents a solution to the problem of database replication and synchronization using a technique called data subsetting. It describes the mobile database problem, describes how data subsetting works, identifies the issues to address when replicating and synchronizing databases, and describes DataSync,(a data subsetting toolkit.

SYWARE logo

Database Replication and Synchronization

Introduction

Recent advances in portable computing devices have opened up tremendous potential for database systems. Electronic data processing is no longer confined to a central office. Data can now be collected, retrieved, and updated electronically while traveling, at remote sites, or on independent systems at the corporate site. Common examples include:

Salespeople taking customer orders on laptop computers

Production and inventory planners using palm-top mobile systems

Regional support personnel in home offices hooked up via WANs

Headquarters staff using LAN-based desktop systems such as PCs

Telecommuters using the Internet

Unfortunately, traditional Database Management Systems (DBMSs) were not built with portable computers in mind. Typical DBMSs require immediate direct access to the database in order to read, write, and update data. However, a growing number of professionals do not have continuous direct access to corporate databases.

For example, a manager cannot run a dBASE application while on a airplane over Chicago if the .DBF files are on a server in Texas. Likewise, a salesperson cannot connect to the corporate Oracle database from a customer site. Wide Area Nets (WANs) can provide access in some situations, but in many cases they are too slow, too costly, or not available.

To add complexity to the problem, applications may need to exchange information with more than one type of database. There are currently as many as 30 different third-party relational or hierarchical database systems, and an infinite number of flat file and proprietary database systems. Ideally, a solution that provides access to the necessary systems would also be capable of exchanging data between diverse databases.

An effective solution to these problems is a technique called “data subsetting.” Data subsetting uses an open architecture to enable companies to:

Copy data from a source database,

Create separate client databases that can be read and modified by third-party or proprietary applications, and

Migrate changes made in the separate client databases to the source database (and vice-versa) as often as necessary.

Data Subsetting Overview

When using data subsetting, all or part of one or more source databases are replicated, according to the data requirements of specific users or user groups. For example, a sales force might need customer names and addresses from one database, and product names and prices from another. Other information contained in the source databases, such as customer payment terms or product component lists, need not be copied if they are not required by the salespeople. The resulting user-specific client copies are called “subsets.”

Users access their subsets via their mobile or remote computers, reading and modifying data using commercially-available or custom applications. These applications may integrate the data subsetting software, if desired. Data subsetting allows users to migrate changes at any time from their subsets to the source database, or from the source database to their subsets.

Data subsetting takes advantage of the fact that, for many applications, direct access to the source database is not required. For example, a salesperson could read the source databases every morning to create a subset containing up-to-date sales information. During the day, she could quote prices to customers and enter orders. At the end of day, she could update the source databases with new orders, and update her subset with any price changes that may have occurred at the corporate site during the day.

Other types of users might require more or less frequent access to source databases. Data subsetting lets users control the frequency of updates between the subsets and the source databases.

An important feature of data subsetting is the capability to specify how changes are to be propagated between the source databases and the subsets. Options for applying changes include protecting the original values, allowing the replacement of one value by another, adding values together, etc.

Data Subsetting Engines and Subset Definition

A data subsetting engine creates the subset database based on a subset definition:

�SYMBOL 183 \f "Symbol" \s 10 \h�	The subset database is the copy of all or part of the source database(s) required by users while away from the corporate site. The format of the subset database need not be the same as the source database. For example, the source database may be an Informix database, and the subset database may be a Paradox database.

�SYMBOL 183 \f "Symbol" \s 10 \h�	The subset definition specifies the values to be copied to the subset database, and how to synchronize changes to the subset database with changes to the source database.

Heterogeneous Database Formats

As previously mentioned, data subsetting does not require that the format of the subset database be the same as the source database. In fact, in some cases this is not even possible: if the source database format is an IBM AS/400 database, users will not have AS/400 machines available to them while traveling.

Selection of the subset database format depends on the situation. If mobile users already use Microsoft Excel on their notebooks, a spreadsheet format may make sense. If their applications are written in dBASE, then dBASE subset databases would be the logical choice.

Data Conversions

One problem encountered when dealing with diverse database formats is data type incompatibility. For example, SQLServer supports a “timestamp” data type that contains both a date and a time, but dBASE only supports a “date” data type.

Data subsetting ensures compatibility between data types between different database formats. The data subsetting engine automatically converts data from one format to another as necessary.

Synchronization of Source and Subset Databases

The most difficult problem handled by data subsetting is the synchronization of the source and subset databases. Synchronization is the process of updating the source database to reflect changes made to the subset database, and updating the subset database with changes made to the source database.

The simplest situation is one in which one of the databases (either the subset or the source) will not change between the creation of the subset and its subsequent synchronization with the source database. In this case, synchronization is a simple matter of overwriting the unchanged values with the changed values.

However, most situations are more complex (the data in both databases may change. Synchronization must then resolve conflicts when data items changed in the subset database were also changed in the source database since the last synchronization. The subset definitions used by data subsetting provide a means for specifying how these data synchronization conflicts should be resolved for specific data items in each database.

For example, if a specific order’s amount was modified in the subset database, the subset definition might specify that the changed order amount replace the original order amount in the source database. In contrast, if the number of units in inventory was decreased in the subset database, the source database should be decreased by the same amount rather than being replaced by the subset value. Increasing or decreasing the number of units in inventory, rather than overwriting each new value, would allow the changes made by different users to cumulatively affect the source database.

Other data subsetting synchronization methods include specifying the time-last-updated, the maximum or minimum value, the multiplying or dividing of incremental changes, and (as a last resort) the querying of the user to resolve conflicts.

Data subsetting does not limit synchronization to modified data (the data subsetting engine must also reconcile any new or deleted data in the subset and source databases.

Asynchronous Synchronization

While it is possible to choose a single point in time at which the changes to the source database are propagated to the subset database and the changes to the subset database are propagated to the source database, this is not a requirement for data subsetting. Changes from the subset database might be applied to the source database frequently, while changes from the source database might be applied to the subset database at a less frequent interval. For example, orders may be sent into the corporate office daily, while changes to product prices may occur only once a week.

When synchronizing asynchronously, the data subsetting engine prevents a change from cycling around the system indefinitely. For example, if a price change in the source database is propagated to the subset, that change is distinguished from subset database changes made by the salesperson. The data subsetting engine propagates the salesperson’s changes back to the source database, without propagating the price change that originated at the source database.

Communication Issues

When synchronizing databases, it is generally unfeasible to send the entire database from one site to another to determine the data that has changed. The more efficient solution used by data subsetting is to send a log containing only the changed data. Sending only the differences can result in a large savings in communication costs such as phone charges for modems.

Communication issues highlight the advantages of using data subsetting in mixed mobile, LAN, and WAN-based environments. The constant handshaking required by traditional client-server architectures is eliminated by data subsetting. Instead, communication between central and client databases takes place only at synchronization time, greatly reducing network traffic and its associated costs.

Also, user productivity and satisfaction is often increased when data subsetting is used instead of direct connection to the central database. The ability to access and use data locally allows work to proceed without the frustrating delays caused by network traffic jams.

Responding to Change

Because data subsetting offers a single solution to a variety of data usage scenarios, it enables companies to respond quickly to changes in usage without modifying applications. If a LAN-based professional becomes a telecommuter three weeks after application deployment, the same application can be used unmodified. Workers that occasionally travel or work off-site can continue to use the same applications in the same way they use them at the corporate site.

Companies can develop applications for their specific needs or use third-party products, without writing code for database replication and synchronization. The data subsetting engine handles all of these needs.

A Commercial Toolkit for Database Replication and Synchronization

Some organizations have designed and developed custom software for their database replication and synchronization needs. Typically, the development process is lengthy (a minimum of one man-year), which can significantly impact application development and deployment schedules.

A commercially-available application, DataSync(, from SYWARE(, Inc. uses the data subsetting approach to data replication and synchronization. DataSync can be used “as is” alongside applications, or incorporated invisibly into new or existing software.

The DataSync Development Kit provides developers with graphical interface tools to create user-specific subset definitions that identify the data needed in subsets and the synchronization rules that control reintegration of changes. Once the subset definitions exist, the DataSync Runtime system can extract the subset database and synchronize it with the source database whenever desired.

Because DataSync tracks the database changes independently, any application can update the source or subset databases. For example, DataSync could be used to extract spreadsheets containing data from an Oracle database, Excel could be used to modify the subset database, and DataSync could be used to synchronize the changes back into the Oracle database. DataSync provides all functions required to extract, update, and synchronize data.

DataSync’s application programming interface (API) allows it to be invisibly embedded into applications written with popular PC development tools such as Visual Basic, PowerBuilder, and C/C++ for customized application development.

Shadowing

DataSync uses an advanced shadowing technology to track the source and subset database changes that have occurred since the last synchronization. DataSync creates and maintains a second copy of the subset called the “shadow.” The shadow that resides on the source computer records the state of the source database at the time of the last synchronization. The shadow on the portable computer records the state of the subset database at the last synchronization.

When propagating changes from the subset to the source database, DataSync compares the shadow to the subset database, and creates a log containing any changes, deletions, and/or additions. It then propagates the log’s contents to the source database as well as to the shadow located on the source computer.

� EMBED Word.Picture.6 ���

Propagating Changes to the Source Database

Similarly, when propagating changes from the source database to the subset, DataSync compares the shadow to the source database, and creates a log containing any changes, deletions, and/or additions. It applies the log’s contents to the subset database as well as to the shadow located on the subset computer.

DataSync Technical Specifications

System Requirements

DataSync Development Kits require the use of a 386+ PC, 4MB of RAM, 2MB of available disk space and Windows 3.x.

DataSync Runtimes (for application deployment) require 2MB of RAM and 1MB of available disk space on mobile or remote PCs.

ODBC drivers for server and client databases are also required.

Database specifications

A server database for DataSync can be any ODBC data source that is accessible via an ODBC Level 1 database driver. DataSync extracts data into any file format supported by either a single-tier ODBC Level 1 database driver, Microsoft Access, WATCOM or Personal ORACLE. DataSync includes a simple dBASE driver.

Transport Mechanisms

DataSync is transport-independent to support multiple network and remote configurations. Transport mechanisms such as MAPI or XcelleNet’s RemoteWare are commonly used with DataSync applications. DataSync Remote is an optional add-on product which enables modem connection and communication specifically for DataSync.

Author

Sy Danberg is the senior technical lead at SYWARE, Inc. Based in Cambridge, Massachusetts, SYWARE develops and supplies ODBC application development tools, and provides consulting services to developers of DBMSs. SYWARE has worked with the database development teams of Microsoft, Borland, Lotus, Ashton-Tate, Xerox, and Data General. Sy can be reached at (617)497-1376, by email at sy@syware.com and by CompuServe at 75310,2100.

