
© Copyright 1995-97 SYWARE, Inc. All rights reserved.
SYWARE and Dr. DeeBee are registered trademarks of SYWARE, Inc.

Dr. DeeBee® ODBC Driver Kit (Silver Edition)

Overview

The Dr. DeeBee ODBC Driver Kit (Silver Edition) contains the complete C/C++ source code
for a fully functional ODBC driver (Level 1 API, minimum SQL grammar). Programmers can
modify this source code to provide ODBC access their own proprietary databases.

The source code provides a complete ODBC driver implementation. The driver has the
following limitations:

• Only minimum level SQL is supported, with some additional core level SQL
functionality. See Appendix A for the SQL grammar supported.

• Only the level 1 ODBC API calls are supported, plus a few additional level 2 functions
(like SQLPrimaryKeys and SQLForeignKeys)

• Column and table names are not case-sensitive (this can easily be changed). String data
comparisons are case sensitive.

• Character and binary values supplied for parameterized queries (SELECT * FROM
EMP WHERE NAME = ?) are limited to 255 bytes.

• Qualifiers or owners are not allowed on databases, tables, etc.
• There is limited query optimization. No indexes are used, although there are hooks in

place to allow you to use indexes.

In the source code provided, simple dBASE files (dBASE files without indexes or memos) are
used as the underlying database. All dBASE specific code is isolated to two modules: ISAM.C
and DBASE.C.

Our initial testing shows that this driver will work with off-the-shelf applications such as Access,
Visual Basic, PowerBuilder, MFC, Visual C/C++, etc. If you encounter problems, please let
us know.

New Features in the Silver Edition

This release adds the following new features to the Bronze Edition:

• Transactions.
• Nested sub-selects.
• Outer joins (including multi-tier outer joins).
• Scalar functions.
• CREATE INDEX and DROP INDEX.

Page 2 Dr. DeeBee ODBC Driver Kit (Silver Edition)

• SQLForeignKeys() and SQLPrimaryKeys().
• The code can be compiled as C or C++.
• The + operator can be used in SQL statements for string concatenation
• Scientific notation (1.23E+45) can be used.

See Appendix B for notes on how to migrate from the Bronze Edition to the Silver Edition.

What You Need

In addition to the Dr. DeeBee ODBC Driver Kit (Silver Edition), you will need the following to
build and distribute your ODBC driver:

• A C/C++ compiler such as Microsoft Visual C++.
• The ODBC SDK. The ODBC SDK is available directly from Microsoft as part of

MSDN Level 2. Call Microsoft at 1-800-759-5474 or 1-206-882-8080 for more
information. At the time of this writing, the ODBC SDK was also posted on the
Microsoft web site at http://www.microsoft.com/odbc/download/.

It is assumed that the user has working knowledge of what ODBC is, the ODBC API, how to
use ODBC, etc. Recommended reading in these areas is:

• Windows Multi-DBMS Programming; Ken North; John Wiley & Sons; 1995
• Inside ODBC; Kyle Geiger; MS Press; expected June 1995
• The ODBC Solution; Robert Signore, John Creamer, Micheal O. Stegman; McGraw-

Hill; 1995
• Microsoft ODBC 2.0 Programmer's Reference and SDK Guide; Microsoft Press;

1994

SYWARE Support

Included with your purchase is one hour of telephone support at 617-497-1300. Additional
telephone support is available on a fee-per-event basis. Questions can also be E-mailed to
support@syware.com.

If you find bugs or have other feedback, we welcome your comments. Please E-mail them to
support@syware.com.

Dr. DeeBee ODBC Driver Kit (Silver Edition) Page 3

Installing the Dr. DeeBee ODBC Driver Kit (Silver Edition)

WARNING:
If you are installing over a previous version of the kit, backup any old installation

of the kit before installing. The installation overwrites everything in any
previous installation without making any backup files.

To install the Dr. DeeBee ODBC Driver Kit (Silver Edition), do the following:

• Install your C compiler.
• Install the ODBC SDK.
• Put the installation disk in drive A: and run SETUP.EXE.

Once installed, you will see the following:

C:\DRDBDR - Your installation directory (the default)
C:\DRDBDR\SOURCE - ODBC driver source code
C:\DRDBDR\SETUP - 16-bit ODBC driver DLL and installer
C:\DRDBDR\SETUP32 - 32-bit ODBC driver DLL and installer

C:\DRDBDR\SETUP\DRDBDR.DLL is a 16-bit compiled version of the source code found in
C:\DRDBDR\SOURCE. C:\DRDBDR\SETUP32\DRDBDR32.DLL is a 32-bit compiled
version of the source code found in C:\DRDBDR\SOURCE.

Getting Started

You will probably want to start by rewriting ISAM.C to read and write data from your
database (rather than dBASE files). Once this is done, you will have an ODBC driver for your
DBMS or file format with the same limitations specified in the Overview section above. See
Appendix C for a suggested strategy on how to implement ISAM.C.

After this is done, you can add functionality to your driver by modifying the rest of the code.

Distributing Your Driver

Except for DRDBDR.DLL and DRDBDR32.DLL; none of the components in the Dr. DeeBee
ODBC Driver Kit (Silver Edition) are redistributable. The driver you create using the kit (in the
form of a DLL) is redistributable royalty-free in most cases. See your license (Appendix D) for
more details.

Page 4 Dr. DeeBee ODBC Driver Kit (Silver Edition)

If you copy C:\DRDBDR\SETUP*.* to a diskette, you will have a setup disk that will load the
16-bit Dr. DeeBee ODBC Sample Driver. If you copy C:\DRDBDR\SETUP32*.* to a
diskette, you will have a setup disk that will load the 32-bit Dr. DeeBee ODBC Sample Driver.
However, your license agreements with SYWARE only allows you to redistribute
DRDBDR.DLL and DRDBDR32.DLL. Your right to redistribute the other components in
C:\DRDBDR\SETUP and C:\DRDBDR\SETUP32 can be obtained from your ODBC SDK
license.

To create a setup disk for your 16-bit driver, do the following:

• Delete C:\DRDBDR\SETUP\DRDBDR.DLL.
• Copy your DLL into C:\DRDBDR\SETUP.
• Edit C:\DRDBDR\SETUP\ODBC.INF as follows:

• In the section [Dr. DeeBee Sample Driver 16], change DRDBDR.DLL to the name
of your DLL, change 1997-05-01 to the date on your DLL, and change 233808 to
the size of your DLL.

• Search for "Dr. DeeBee" elsewhere in the ODBC.INF and make the appropriate
changes.

To create a setup disk for your 32-bit driver, do the same in the C:\DRDBDR\SETUP32
directory.

Using C++

The kit, as installed, assumes C (not C++) compiles. If your underlying database API happens
to be C++, you might want to compile the driver kit as C++. The code was written such that it
will compile either way. All you have to do is change the module names from *.C to *.CPP.
Two batch files (C_TO_CPP.BAT and CPP_TO_C.BAT) are provided for this purpose.

ODBC Data Types

The Dr. DeeBee ODBC Driver Kit (Silver Edition) can support any of the ODBC data types
(SQL_CHAR, SQL_INTEGER, etc.) The data types your driver will support depends on your
underlying database. As installed, the Dr. DeeBee ODBC Driver Kit (Silver Edition) supports
the dBase data types (SQL_BIT, SQL_CHAR, SQL_DATE, and SQL_DECIMAL).

There is a table of types in SQLTYPE.C, one entry for each ODBC datatype. Specify which
types your driver supports by modifying this table. If your underlying database does not
support one of the ODBC datatypes in this table, do not remove the entry from this table.
Instead, just set the value of the 'supported' element in the structure to FALSE.

Dr. DeeBee ODBC Driver Kit (Silver Edition) Page 5

If your database has two datatypes that you want to map onto the same ODBC type (this
happens sometimes, you'll know when it does), add extra entries to the table. Just make sure
that the "more general" entry for any given ODBC data type comes first.

See the comments in SQLTYPE.C for more details.

Sorting

Sorting is used to implement the ORDER BY and GROUP BY clauses of a SELECT
statement. The Dr. DeeBee ODBC Driver Kit (Silver Edition) sorts in two ways: pushdown
sorts and upper-level sorts.

The pushdown sort is implemented by pushing the sorting functionality down to the ISAM layer.
If the upper layers of the system determine that a pushdown sort can be used, it calls
ISAMSort(). If the ISAM layer can implement the sort, the ISAM layer returns a status of
NO_ISAM_ERR and a pushdown sort is done.

If the upper layers of the system determine that a pushdown sort cannot be used, or if an
ISAMSort() call of a pushdown sort returns a status other then NO_ISAM_ERR, an upper-
level sort is done.

Use of Indexes

To solve a query, the upper levels of the system opens a table and retrieves the records in the
table. For each record retrieved, it tests the selection criteria specified and filters out the
records that do not meet the criteria. This filtering can be pushed down to the ISAM layer.
When this is done, the query would take less time to execute since fewer records would have to
be processed by the upper levels.

This section describes this pushdown mechanism in general terms. For details, see the
documentation of ISAM.H (in particular, ISAMOpenTable(), ISAMRestrict(),
ISAMNextRecord(), and the declaration of COLUMNDEF).

When the upper levels of the system calls the ISAM layer to open a table, the ISAM layer
returns the name and type of each of the columns. In addition to this information, the ISAM
layer also returns the selectivity of each column. The selectivity is an indication of how selective
the column is (for example, RECORD_ID would be very selective, NAME would be
moderately selective, ZIPCODE would not be very selective).

Page 6 Dr. DeeBee ODBC Driver Kit (Silver Edition)

When the upper levels of the system receives a query, it walks the predicate to find the selective
clauses (based on the selectivity specified when the table was opened). After the upper levels
of the system open the table, but before any records are retrieved from the table, it passes these
clauses down to the ISAM layer to tell the ISAM layer "you only need to return records that
satisfy this criteria". It then starts to retrieve the records from the ISAM layer. A typical ISAM
implementation will use its indexes to decide which records should returned.

For example, suppose the query is:

SELECT * FROM ORDERS, ITEMS WHERE ORDER.ID = ITEM.ORDERID

the tables are:

 ORDERS ITEMS

NAME ID ORDERID ITEM
-------- -- ----------- ------
FRED 77 77 MILK
BILL 99 77 CHEESE
 99 EGGS

Also assume that the selectivity of ITEMS.ORDERID (as return by ISAMOpenTable()) is non-
zero.

In this case, the system would generate the following sequence of ISAM calls:

ISAMOpenTable(ORDERS)
ISAMOpenTable(ITEMS)
ISAMRewind(ORDERS)

ISAMNextRecord(ORDERS) (which positions to FRED's record)
ISAMRestrict(ITEMS, ORDERID == 77)
ISAMRewind(ITEMS)

ISAMNextRecord(ITEMS) (which positions to the MILK record)
ISAMNextRecord(ITEMS) (which positions to the CHEESE record)
ISAMNextRecord(ITEMS) (which returns end-of-file)

ISAMNextRecord(ORDERS) (which positions to BILL's record)
ISAMRestrict(ITEMS, ORDERID == 99)
ISAMRewind(ITEMS)

ISAMNextRecord(ITEMS) (which positions to the EGGS record)
ISAMNextRecord(ITEMS) (which returns end-of-file)

ISAMNextRecord(ORDERS) (which returns end-of-file)
ISAMCloseTable(ORDERS)
ISAMCloseTable(ITEMS)

Dr. DeeBee ODBC Driver Kit (Silver Edition) Page 7

Transactions

Transactions are supported to the extent they are supported by the underlying database. For
example, if you were building a driver for a true relational engine (such as Oracle or SQL
Server), the transaction mechanism implemented by the engine could be used to implement
transactions in the driver. On the other hand, if you were building a driver for simple text files,
transactions would not be supported since regular file input/output does not support transaction
operations such as commit or rollback.

Exposing the underlying database's transaction capabilities is relatively straight forward. Initially,
you specify the transaction capabilities of your underlying system. There are a variety of options
ranging from "transactions are not supported" to "full transaction support". If you specify that
transactions are supported, they are initiated implicitly by calls to ISAM layer. The ISAM layer
receives explicit calls to commit or rollback a transaction.

Transactions are described in detail in ISAM.H.

Passthrough SQL

Before an SQL query is processed by the upper levels of the system, it is first passed to
ISAMPrepare(). This gives the ISAM layer the option of passing it to a SQL backend or
having the upper levels of the system process it.

ISAMPrepare() responds in one of three ways:

1. It indicates that the upper levels of the system should process the query.

2. It indicates that the query will be processed by the backend and no result set will be

returned (for example, an INSERT statement).

3. It indicates that the query will be processed by the backend and a result set will be

returned (for example, a SELECT statement).

If a result set is returned, it is returned like any other table. The ISAMPrepare() call returns the
name of this virtual table. The upper level of the system will process a "SELECT * FROM
<virtual-table>" to retrieve the values.

After ISAMPrepare() is called, ISAMExecute() is called to actually run the query.
ISAMExecute() may be called several times after a single call to ISAMPrepare(). When the
upper levels of the system no longer needs the query, ISAMFreeStatement() is called.

Page 8 Dr. DeeBee ODBC Driver Kit (Silver Edition)

The SQL prepared by ISAMPrepare() can contain parameters, and these parameters are
specified by ISAMParameter() calls that are made after the call to ISAMPrepare() but before
the ISAMExecute().

The sample code shows two simple examples of passthrough SQL. The first processes the
query "SQL" by returning a table with one column and two rows. The second processes the
query "MessageBox(?,?)" by putting up a message box whose content and title are specified by
parameters one and two (respectively).

Architecture

The architecture of the source codes is shown in the following diagram:

 +---+
 | ODBC API |
 +---------+---------+---------+------+---------+---------+---------+----------+
CATALOG	CONNECT	EXECUTE	INFO	OPTIONS	PREPARE	RESULTS	TRANSACT
+---------+---------+---------+------+---------+---------+---------+----------+							
+-----+ +-------+ +----------+ +----------+ +----------+ +---------+							
	DLL		PARSE		SEMANTIC		OPTIMIZE
+-----+ +-------+ +----------+ +----------+ +----------+ +---------+							
+-----+ +-------+ +------+							
						+---------------------------------+-----------+	
	BCD		TRACE		SORT		
							ISAM
+-----+ +-------+ +------+		SQLTYPE					
+--------+ +----------------+------------+							
	SCALAR						
			UTIL +--------------------+-----------+				
+--------+							
		DBASE					
 +---+

Figure 1: Source Code Architecture

The modules are:

CATALOG.C - ODBC entry points for catalog functions:

SQLTables
SQLColumns
SQLStatistics
SQLTablePrivileges

Dr. DeeBee ODBC Driver Kit (Silver Edition) Page 9

SQLColumnPrivileges
SQLSpecialColumns
SQLPrimaryKeys
SQLForeignKeys
SQLProcedures
SQLProcedureColumns

CONNECT.C - ODBC entry points for database connection functions:

SQLAllocEnv
SQLAllocConnect
SQLConnect
SQLDriverConnect
SQLBrowseConnect
SQLDisconnect
SQLFreeConnect
SQLFreeEnv

EXECUTE.C - ODBC entry points for SQL execution functions:

SQLExecute
SQLExecDirect
SQLNativeSql
SQLParamData
SQLPutData
SQLCancel

INFO.C - ODBC entry points for informational functions:

SQLGetInfo
SQLGetTypeInfo
SQLGetFunctions

OPTIONS.C - ODBC entry points for connection and statement option functions:

SQLSetConnectOption
SQLSetStmtOption
SQLGetConnectOption
SQLGetStmtOption

PREPARE.C - ODBC entry points for query preparation setup functions:

SQLAllocStmt
SQLFreeStmt
SQLPrepare
SQLBindParameter
SQLDescribeParam
SQLParamOptions

Page 10 Dr. DeeBee ODBC Driver Kit (Silver Edition)

SQLNumParams
SQLSetScrollOptions
SQLSetCursorName
SQLGetCursorName

RESULTS.C - ODBC entry points for result retrieval functions:

SQLNumResultCols
SQLDescribeCol
SQLColAttributes
SQLBindCol
SQLFetch
SQLGetData
SQLMoreResults
SQLRowCount
SQLSetPos
SQLExtendedFetch
SQLError

SORT.C - Sorting operations.

TRANSACT.C - ODBC entry points for transaction functions:

SQLTransact

DLL.C - LibMain, etc.

PARSE.C - Parses SQL statement (as a text string) and creates a parse tree. This module
implements a recursive descent parser for SQL.

SEMANTIC.C - Check a parse tree for semantic correctness. This module also contains a
routine to display parse trees on the debug monitor.

OPTIMIZE.C - Query optimizer. Currently the only optimization done is to find restrictions on
tables to cut down the search space.

EVALUATE.C - Evaluates SQL expressions and executes SQL statements.

COLDEFS.C - This module contains the definition of the columns returned by the virtual tables
returned by the catalog functions and SQLGetTypeInfo(). It is unlikely you will ever need to
modify these.

SQLTYPE.C - Definition of the SQL types supported by the driver. As installed, the Dr.
DeeBee ODBC Driver Kit (Silver Edition) supports SQL_BIT, SQL_CHAR, SQL_DATE,

Dr. DeeBee ODBC Driver Kit (Silver Edition) Page 11

and SQL_DECIMAL. If you want your driver to support other types, modify the entries in the
tables in this module. See the comments in SQLTYPE.C.

BCD.C- Operations to compare, negate, add, subtract, multiply, and divide Binary Coded
Decimal values.

SCALAR.C- Implementation of scalar functions.

ISAM.C - Low level record access interface. The majority of the work needed to access data
in a format other than dBASE is done in this module. Routines that are new in the Silver Edition
are in boldface. The driver writer is expected to provide the implementation of the following
routines (as documented in ISAM.H):

ISAMOpen
ISAMGetTableList
ISAMGetNextTableName
ISAMFreeTableList
ISAMForeignKeys
ISAMCreateTable
ISAMAddColumn
ISAMCreateIndex
ISAMDeleteIndex
ISAMOpenTable
ISAMRewind
ISAMSort
ISAMRestrict
ISAMNextRecord
ISAMGetData
ISAMPutData
ISAMInsertRecord
ISAMUpdateRecord
ISAMDeleteRecord
ISAMGetBookmark
ISAMPosition
ISAMCloseTable
ISAMDeleteTable
ISAMPrepare
ISAMParameter
ISAMExecute
ISAMFreeStatement
ISAMClose
ISAMSetTxnInfo
ISAMCommitTxn

Page 12 Dr. DeeBee ODBC Driver Kit (Silver Edition)

ISAMRollbackTxn
ISAMGetErrorMessage
ISAMGetColumnType
ISAMCaseSensitive
ISAMName
ISAMVersion
ISAMDriver
ISAMMaxTableNameLength
ISAMMaxColumnNameLength
ISAMUser
ISAMDatabase

UTIL.C - Utility functions:

CharToDouble - Converts strings to doubles
CharToDate - Converts strings to dates
CharToTime - Converts strings to times
CharToTimestamp - Converts strings to timestamps
DoubleToChar - Converts doubles to strings
DateToChar - Converts dates to strings
TimeToChar - Converts times to strings
TimestampToChar - Converts timestamps to strings
ReturnString - Copies strings and their length
ReturnStringD - Copies strings and their length
ConvertSqlToC - Converts data from one type to another
PatternMatch - Wildcard pattern matching
TrueSize - Determines size of a string

DBASE.C - Routines to read and write records in dBASE files. This module is only used by
ISAM.C.

TRACE.C - Tracing facilities. To enable tracing, set ISAM_TRACE to TRUE in UTIL.H (not
TRACE.H), delete all your .OBJ and .PCH files, and recompile. Setting ISAM_TRACE to
TRUE will trace every ISAM.C call. The output is sent to the debug window (DBWIN.EXE).

Tips and Tricks

The following tips and tricks will make your development easier:

1. Before modifying ISAM.C or any other modules, create a project (see Appendix C for
a list of files your project should include) and recompile the system. This will allow you

Dr. DeeBee ODBC Driver Kit (Silver Edition) Page 13

find problems in your development environment independently of bugs you might enter
into the code.

2. Run SETUP.EXE in C:\DRDBDR\SETUP or C:\DRDBDR\SETUP32 to install the

driver and create a datasource (MYSOURCE) using the driver. When creating the
new datasource, be sure to use the "Database" edit control to specify the name of the
directory that holds the .DBF files.

Once you do this, redirect the MYSOURCE datasource to use the DLL created by
your compiler rather than the one in the Windows system directory. To do this...

...in Windows 3.x - Using a text editor, such as NOTEPAD, edit
C:\WINDOWS\ODBC.INI. Look for the [MYSOURCE] section and change
the <file> designated by the "Driver=<file>" keyword/value pair to specify the
complete pathname of the .DLL file created by your compilation.

...in Windows NT/Win95 - Using the registry editor change the value of

/HKEY_CURRENT_USER/Software/ODBC/ODBC.INI/MYSOURCE/Driver
to specify the complete pathname of the .DLL file created by your compilation.

Once you do this, you will not have to reinstall after each compilation of your driver,
since the MYSOURCE datasource will always be pointing at the DLL just created.

3. If you are using Microsoft Visual C++ to create a 16-bit driver, set "Calling Program"

under Options | Debug to be C:\ODBCSDK\BIN\ODBCTEST.EXE. You can then
set breakpoints in your driver, and run (DEBUG | GO).

4. If you are using Microsoft Visual C++ to create a 32-bit driver, set the executable to

use when running under the debugger to C:\ODBCSDK\BIN32\ODBCTE32.EXE.
You can then set breakpoints in your driver, and run (DEBUG | GO).

5. You can easily generate a trace of the calls to ISAM.C by setting the ISAM_TRACE

flag to TRUE and recompiling. This flag is declared in UTIL.H.

Page 14 Dr. DeeBee ODBC Driver Kit (Silver Edition)

Dr. DeeBee ODBC Driver Kit (Silver Edition) Page 15

Appendix A: SQL Grammar supported

(Grammar that is new in the Silver Edition is in boldface)

statement ::= CREATE create | DROP drop | SELECT select orderby | INSERT insert |

DELETE delete | UPDATE update | passthroughSQL

passthroughSQL ::= any statement supported by the backend

create ::= TABLE tablename (createcols) |

INDEX indexname ON tablename (indexcolumns)

indexcolumns ::= indexcolumn | indexcolumn , indexcolumns

indexcolumn ::= columnname asc

createcols ::= createcol , createcols | createcol

createcol ::= columnname datatype | columnname datatype (integer) |

columnname datatype (integer , integer)

drop ::= TABLE tablename | INDEX indexname

select ::= selectcols FROM tablelist where groupby having

delete ::= FROM tablename where

insert ::= INTO tablename insertvals

update ::= tablename SET setlist where

setlist ::= set | setlist , set

set ::= columnname = NULL | columnname = expression

insertvals ::= (columnlist) VALUES (valuelist) | VALUES (valuelist) |

(columnlist) VALUES (SELECT select) |
VALUES (SELECT select)

columnlist ::= columnname , columnlist | columnname

valuelist ::= NULL , valuelist | expression , valuelist | expression | NULL

Page 16 Dr. DeeBee ODBC Driver Kit (Silver Edition)

selectcols ::= selectallcols * | selectallcols selectlist

selectallcols ::= | ALL | DISTINCT

selectlist ::= selectlistitem , selectlist | selectlistitem

selectlistitem ::= expression | expression aliasname | expression AS aliasname

where ::= | WHERE boolean

having ::= | HAVING boolean

boolean ::= and | and OR boolean

and ::= not | not AND and

not ::= comparison | NOT comparison

comparison ::= (boolean) | colref IS NULL | colref IS NOT NULL |

expression LIKE pattern | expression NOT LIKE pattern |
expression IN (valuelist) | expression NOT IN (valuelist) |
expression op expression | EXISTS (SELECT select) |
expression op selectop (SELECT select) |
expression IN (SELECT select) |
expression NOT IN (SELECT select)

selectop ::= | ALL | ANY

op ::= > | >= | < | <= | = | <>

pattern ::= string | ? | USER

expression ::= expression + times | expression - times | times

times ::= times * neg | times / neg | neg

neg ::= term | + term | - term

term ::= (expression) | colref | simpleterm | aggterm | scalar

scalar ::= scalarescape | scalarshorthand

scalarescape ::= --*(VENDOR(MICROSOFT),PRODUCT(ODBC) FN fn)*--

Dr. DeeBee ODBC Driver Kit (Silver Edition) Page 17

scalarshorthand ::= { FN fn }

fn ::= functionname (valuelist) | functionname ()

aggterm ::= COUNT (*) | AVG (expression) | MAX (expression) |

MIN (expression) | SUM (expression)

simpleterm ::= string | realnumber | ? | USER | date | time | timestamp

groupby ::= | GROUP BY groupbyterms

groupbyterms ::= colref | colref , groupbyterms

orderby ::= | ORDER BY orderbyterms

orderbyterms ::= orderbyterm | orderbyterm , orderbyterms

orderbyterm ::= colref asc | integer asc

asc ::= | ASC | DESC

colref ::= aliasname . columnname | columnname

tablelist ::= tablelistitem , tablelist | tablelistitem

tablelistitem ::= tableref | outerjoin

outerjoin ::= ojescape | ojshorthand

ojescape ::= --*(VENDOR(MICROSOFT),PRODUCT(ODBC) OJ oj)*--

ojshorthand ::= { OJ oj }

oj := tableref LEFT OUTER JOIN tableref ON boolean |

tableref LEFT OUTER JOIN oj ON boolean

tableref ::= tablename | tablename aliasname

indexname ::= identifier

functionname ::= identifier

Page 18 Dr. DeeBee ODBC Driver Kit (Silver Edition)

tablename ::= identifier

datatype ::= identifier

columnname ::= identifier

aliasname ::= identifier

identifier ::= an identifier (identifiers containing spaces must be enclosed in double quotes)

string ::= a string (enclosed in single quotes)

realnumber ::= a non-negative real number (including E notation)

integer ::= a non-negative integer

date ::= dateescape | dateshorthand

dateescape ::= --*(VENDOR(MICROSOFT),PRODUCT(ODBC) d dateval)*--

dateshorthand ::= { d dateval }

dateval ::= a date in yyyy-mm-dd format in single quotes (for example, '1996-02-05')

time ::= timeescape | timeshorthand

timeescape ::= --*(VENDOR(MICROSOFT),PRODUCT(ODBC) t timeval)*--

timeshorthand ::= { t timeval }

timeval ::= a time in hh:mm:ss format in single quotes (for example, '10:19:48')

timestamp ::= timestampescape | timestampshorthand

timestampescape ::= --*(VENDOR(MICROSOFT),PRODUCT(ODBC) ts timestampval)*--

timestampshorthand ::= { ts timestampval }

timestampval ::= a timestamp in yyyy-mm-dd hh:mm:ss[.ffffff] format in single quotes

(for example, '1996-02-05 10:19:48.529')

Dr. DeeBee ODBC Driver Kit (Silver Edition) Page 19

Appendix B: Migrating from the Bronze Edition to the Silver Edition

If you implemented your old driver by only modifying ISAM.C and DBASE.C, for the most
part, the ISAM.C and DBASE.C you implemented for the Bronze Edition can be used with
only minor chages in the Silver Edition. If you modified any other code you will have to re-
implement those changes.

In ISAM.C there are seven changes you must make:

1. The fReserved entry in the ISAM structured has been renamed to fTxnCapable.

If your underlying database does not support transactions, you should continue to set
this to SQL_TC_NONE (i.e., zero). If you set this to SQL_TC_NONE, you can
safely ignore the other transaction related elements.

If your underlying database supports transactions, there is a detailed description of
what you have to do at the ISAM layer to implement transactions in ISAM.H.
Search for SQL_TC_NONE.

Note: To preserve the semantics of the Bronze edition, set this value to
SQL_TC_NONE.

2. The fIsKey entry in the ISAMCOLUMNDEF structured has been renamed to
fKeyComponent. In the Bronze Edition, fIsKey was a boolean value specifying
whether or not the column was part of the primary key. In the Silver Edition,
fKeyComponent is an integer value. If it is zero, the column is not part of the key. If
it is non-zero, it specifies the ordinal position of the column in the key.

For example, if you had a key that was "last name, first name" (in that order),
fKeyComponent would be one for last name (designating that it is the first component
of the key) and two for first name (designating that it is the second component of the
key).

Note: To preserve the semantics of the Bronze edition, set this value to 1 for the first
key field, two for the second, etc.

3. szPrimaryKeyName has been added to ISAMTABLEDEF. This is the name of the

primary key designated by the fKeyComponent values in the ISAMCOLUMNDEF
structures. If there is no primary key, or if the primary key does not have a name, set
this to a zero length string.

Page 20 Dr. DeeBee ODBC Driver Kit (Silver Edition)

Note: To preserve the semantics of the Bronze edition, set this value to a zero length
string.

4. A new function has been added: ISAMForeignKey(). This function describes the
primary key/foreign key relationship between two tables. If there is no foreign key
relationship, it returns ISAM_EOF.

Note: To preserve the semantics of the Bronze edition, this function should always
return ISAM_EOF.

5. A new function has been added: ISAMCreateIndex(). This function creates a new

index in the database.

Note: To preserve the semantics of the Bronze edition, this function should always
return ISAM_NOTSUPPORTED.

6. A new function has been added: ISAMDeleteIndex(). This function removes an

index from the database.

Note: To preserve the semantics of the Bronze edition, this function should always
return ISAM_NOTSUPPORTED.

7. Three new transaction related functions have been added: ISAMSetTxnIsolation(),

ISAMCommitTxn(), and ISAMRollbackTxn(). See the documentation in ISAM.H
for a description of these functions.

Note: These functions will not be called if fTxnCapable in ISAM was set to
SQL_TC_NONE. To preserve the semantics of the Bronze edition, these functions
should always return ISAM_NOTSUPPORTED.

Dr. DeeBee ODBC Driver Kit (Silver Edition) Page 21

Appendix C: Implementation Strategy for ISAM.C

The first thing you want to do is create a project to build your driver with. If you happen to be
building a 16-bit driver using Microsoft Visual C/C++ 1.5, you can use the DRDBDR.MAK
file provided. If you happen to be building a 32-bit driver using Microsoft Visual C/C++ 2.0,
3.0, or 4.0 you can use the DRDBDR32.MAK file provided. Otherwise you will have to build
your own project containing the following files:

BCD.C
CATALOG.C
COLDEFS.C
CONNECT.C
DBASE.C
DLL.C
DRDBDR.C
EVALUATE.C
EXECUTE.C
INFO.C
ISAM.C
OPTIMIZE.C
OPTIONS.C
PARSE.C
PREPARE.C
RESULTS.C

SCALAR.C
SEMANTIC.C
SETUP.C
SORT.C
SQLTYPE.C
TRACE.C
TRANSACT.C
UTIL.C

BCD.H
DBASE.H
DRDBDR.H
EVALUATE.H
ISAM.H
OPTIMIZE.H

PARSE.H
SCALAR.H
SEMANTIC.H
SQLTYPE.H
TRACE.H
UNIXDEFS.H
UTIL.H

DRDBDR.RC
DRDB.ICO

ODBCINST.LIB (if 16-bit)
ODBCCP32.LIB (if 32-bit)

DRDBDR.DEF (if 16-bit)
DRDBDR32.DEF (if 32-bit)

Once your project is set up, it is suggested that you use the following
code...test...code...test...code...test strategy when rewriting ISAM.C to connect to your
database. The testing can be done using ODBC Test (from the ODBC SDK). The testing
assumes that there is a table called EMP with a column called NAME and a column called
SALARY:

Step 1: Connecting:

Code: ISAMOpen()
ISAMClose()
ISAMGetErrorMessage()

Test: Connect | Full Connect

Connect | Full Disconnect

Note: For now, disable transactions by setting fTxnCapable in LPISAM to
SQL_TC_NONE.

Page 22 Dr. DeeBee ODBC Driver Kit (Silver Edition)

Step 2: Get driver description:

Code: ISAMCaseSensitive()
ISAMMaxColumnNameLength()
ISAMMaxTableNameLength()
ISAMName()
ISAMVersion()
ISAMDriver()
ISAMUser()
ISAMDatabase()

Test: Connect | Full Connect
Connect | SQLGetInfo(SQL_IDENTIFIER_CASE)
Connect | SQLGetInfo(SQL_MAX_COLUMN_NAME_LEN)
Connect | SQLGetInfo(SQL_MAX_TABLE_NAME_LEN)
Connect | SQLGetInfo(SQL_DBMS_NAME)
Connect | SQLGetInfo(SQL_DBMS_VER)
Connect | SQLGetInfo(SQL_DRIVER_NAME)
Connect | SQLGetInfo(SQL_USER_NAME)
Connect | SQLGetInfo(SQL_DATABASE_NAME)
Connect | Full Disconnect

Step 3: List of tables:

Code: ISAMGetTableList()
ISAMGetNextTableName()
ISAMFreeTableList()

Test: Connect | Full Connect

Catalog | SQLTables
Results | GetDataAll
Connect | Full Disconnect

Step 4: List of columns for a table:

Code: ISAMOpenTable()
ISAMCloseTable()

Test: Connect | Full Connect
Catalog | SQLColumns(EMP)

Dr. DeeBee ODBC Driver Kit (Silver Edition) Page 23

Results | GetDataAll
Connect | Full Disconnect

Step 5: Simple select:

Code: ISAMRewind()
ISAMNextRecord()
ISAMGetData()

Test: Connect | Full Connect
Statement | SQLExecDirect("select * from EMP")
Results | GetDataAll
Connect | Full Disconnect

Step 6: Select with restriction:

Code: ISAMRestrict()

Test: Connect | Full Connect
Statement | SQLExecDirect("select * from EMP where NAME = 'FRED'")
Results | GetDataAll
Connect | Full Disconnect

Note: ISAMRestrict() will only be called if ISAMTableOpen() returns a
non-zero value for fSelectivity for the NAME column.

Step 7: Select with ORDER BY clause using an upper-level sort:

Code: ISAMGetBookmark()
ISAMPosition()

Test: Connect | Full Connect

Statement | SQLExecDirect("select * from EMP order by NAME")
Results | GetDataAll
Connect | Full Disconnect

Note: Supress pushdown sorts by implementing ISAMSort() as:

if (count != 0)
 return ISAM_NOTSUPPORTED;
else
 return NO_ISAM_ERR;

Page 24 Dr. DeeBee ODBC Driver Kit (Silver Edition)

Step 8: Select with ORDER BY clause using a pushdown sort:

Code: ISAMSort()

Test: Connect | Full Connect
Statement | SQLExecDirect("select * from EMP order by NAME")
Results | GetDataAll
Connect | Full Disconnect

Step 9: Modifying data:

Code: ISAMPutData()
ISAMUpdateRecord()

Test: Connect | Full Connect
Statement | SQLExecDirect("update EMP set SALARY = 20000")
Connect | Full Disconnect

Step 10: Inserting records:

Code: ISAMInsertRecord()

Test: Connect | Full Connect
Statement | SQLExecDirect(

"insert into EMP(NAME, SALARY) values ('CRAIG', 20000)")
Connect | Full Disconnect

Step 11: Deleting records:

Code: ISAMDeleteRecord()

Test: Connect | Full Connect
Statement | SQLExecDirect("delete from EMP where NAME ='CRAIG'")
Connect | Full Disconnect

Step 12: Creating a table:

Dr. DeeBee ODBC Driver Kit (Silver Edition) Page 25

Code: ISAMCreateTable()
ISAMAddColumn()

Test: Connect | Full Connect
Statement | SQLExecDirect(

"create table EMP2(NAME CHAR(10), SALARY DECIMAL(14,2))")
Connect | Full Disconnect

Step 13: Deleting a table:

Code: ISAMDeleteTable()

Test: Connect | Full Connect
Statement | SQLExecDirect("drop table EMP2")
Connect | Full Disconnect

Step 14: Passthrough SQL:

Code: ISAMPrepare()
ISAMParameter()
ISAMExecute()
ISAMFreeStatement()

Test: Connect | Full Connect
Statement | SQLExecDirect(<<SQL to be passed to the back end >>)
If the query returns a result set: Results | GetDataAll
Connect | Full Disconnect

Step 15: Creating an index:

Code: ISAMCreateIndex()

Test: Connect | Full Connect
Statement | SQLExecDirect("create index EMPINDEX on EMP(NAME)")
Connect | Full Disconnect

Step 16: Deleting an index:

Code: ISAMDeleteIndex()

Test: Connect | Full Connect
Statement | SQLExecDirect("drop index EMPINDEX")
Connect | Full Disconnect

Page 26 Dr. DeeBee ODBC Driver Kit (Silver Edition)

Step 17: Foreign Keys:

Code: ISAMForeignKey()

Test: Connect | Full Connect
Catalog | SQLForeignKeys(EMP)
Results | GetDataAll
Connect | Full Disconnect

Step 18: Transactions:

Code: ISAMSetTxnIsolation()
ISAMCommitTxn()
ISAMRollbackTxn()

Test: Connect | Full Connect
Statement | SQLExecDirect(

"insert into EMP(NAME, SALARY) values ('CRAIG', 20000)")
If you are using the ODBC 3 SDK:

Environment | SQLEndTran(SQL_ROLLBACK)
If you are using the ODBC 2 SDK:

Misc | SQLTransact(SQL_ROLLBACK)
Connect | Full Disconnect

Note: Don't forget to enable transactions by setting fTxnCapable in LPISAM to

something other than SQL_TC_NONE.

Dr. DeeBee ODBC Driver Kit (Silver Edition) Page 27

Appendix D: SYWARE License Agreement

Dr. DeeBee ODBC Driver Kit (Silver Edition)

SYWARE SOFTWARE LICENSE
1. GRANT OF LICENSE. SYWARE grants you the right to use the enclosed SYWARE software product in the manner provided below:

a. You may use one copy of the SYWARE software product identified above, which includes "online" or electronic documents (the
"SOFTWARE") on a single computer. The SOFTWARE is in "use" on a computer when it is loaded into temporary memory (i.e., RAM) or
installed into permanent memory (e.g., hard disk, CD-ROM, or other storage device) of that computer. However, installation on a
network server for the sole purpose of internal distribution to one or more other computer(s) shall not constitute "use" for which a
separate license is required, provided you have a separate license for each computer to which the SOFTWARE is distributed.

b. Solely with respect to the electronic documents, you may make unlimited number of copies (either in hardcopy or electronic form),
provided that such copies shall be used only for internal purposes and are not republished or distributed beyond the user's premises.

2. If the SOFTWARE is an upgrade from a SYWARE product, you may now use that upgraded product only in accordance with this
License.

3. COPYRIGHT. The SOFTWARE (including any images, "applets", photographs, animations, video, audio, music, and text incorporated
in the SOFTWARE) is owned by SYWARE or its suppliers and is protected by United States copyright laws and international treaty
provisions. Therefore you must treat the SOFTWARE like any other copyrighted material (e.g. a book or recording) except that you may
either (a) make one copy of the SOFTWARE solely for backup or archival purposes, or (b) transfer the software to a single hard disk
provided you keep the original solely for backup or archival purposes. You may not copy the printed materials accompanying the
SOFTWARE.

4. OTHER RESTRICTIONS. You may not rent or lease the SOFTWARE. You may not transfer the SOFTWARE. You may not
reverse engineer, decompile, or disassemble the SOFTWARE except to the extent such foregoing restriction is expressly prohibited by
applicable law.

5. REDISTRIBUTABLE COMPONENTS.

a. Sample Code. Not withstanding Section 1, SYWARE grants you the right to use and modify the source code version of the
SOFTWARE located in \DRDBDR\SOURCE ("SAMPLE CODE") provided you comply with Section 5.c. You may not distribute SAMPLE
CODE, or any modified version of SAMPLE CODE, in source code form.

b. Redistributable Files. Notwithstanding Section 1, SYWARE grants you a non-exclusive right to reproduce and distribute the object
code version of those portions of the SAMPLE CODE, \DRDBDR\SETUP16\DRDBDR.DLL, and \DRDBDR\SETUP32\DRDBDR32.DLL
(collectively called the REDISTRIBUTABLES), provided you comply with Section 5.c. and that the object code version of the SAMPLE
CODE, or any modified version of the SAMPLE CODE, is an ODBC driver and is only capable of accessing a single DBMS or file
format.

c. Redistribution Requirements. If you redistribute the REDISTRIBUTABLES, you must (i) not use SYWARE's name, logo,
trademarks, to market your software application product; (ii) include a valid copyright notice on your software product; (iii) agree to
indemnify, hold harmless, and defend SYWARE from and against any claims or lawsuits, including attorney's fees, that arise or result
from the use or distribution of your software application product; and (iv) do not permit further distribution of the REDISTRIBUTABLES
by your end-user.

The license in this section to distribute the REDISTRIBUTABLES is royalty -free.

6. EXPORT RESTRICTIONS. You agree that neither you nor your customers intends to or will, directly or indirectly, export or transmit (i)
the SOFTWARE or related documentation and technical data or (ii) your software product as described in section 5 of this License (or
any part thereof), or process, or service that is the direct product of the SOFTWARE, to any country to which such export or
transmission is restricted by any applicable U.S. regulation or statute, without prior written consent, if required, of the Bureau of Export
Administration of the U.S. Department of Commerce, or such other governmental entity as may have jurisdiction over such export or
transmission.

LIMITED WARRANTY
LIMITED WARRANTY. Except with respect to the REDISTRIBUTABLES, which are provided "as-is", without warranty of any
kind, SYWARE warrants that (a) the SOFTWARE will perform substantially in accordance with the accompanying written materials for a
period of ninety (90) days from the date of receipt, and (b) any hardware accompanying the SOFTWARE will be free from defects in
materials and workmanship under normal use and service for a period of one (1) year from date of receipt. Any implied warranties on the
SOFTWARE and hardware are limited to ninety (90) days and one (1) year, respectively. Some states/jurisdictions do not allow
limitations on duration of an implied warranty, so the above limitation may not apply to you.

CUSTOMER REMEDIES. SYWARE's and its suppliers' entire liability and your exclusive remedy shall be, at SYWARE's option, either
(a) return of the price paid, or (b) repair or replacement of the SOFTWARE or hardware that does not meet SYWARE's Limited Warranty
and which is returned to SYWARE with a copy of your receipt. This Limited Warranty is void if failure of the SOFTWARE or hardware
has resulted from accident, abuse, or misapplication. Any replacement SOFTWARE or hardware will be warranted for the remainder of
the original warranty period or thirty (30) days, whichever is longer. Outside the United States, neither these remedies nor any
product support services offered by SYWARE are not available without proof of purchase from an authorized U.S. source.

NO OTHER WARRANTIES. To the maximum extent permitted by applicable law, SYWARE and its suppliers disclaim all other
warranties, either express or implied, including, but not limited to, implied warranties of merchantability and fitness for a
particular purpose, with regard to the SOFTWARE, the accompanying written materials, and any accompanying hardware.

Page 28 Dr. DeeBee ODBC Driver Kit (Silver Edition)

This limited warranty gives you specific legal rights. You may have others, which vary from state/jurisdiction to
state/jurisdiction.

NO LIABILITY FOR CONSEQUENTIAL DAMAGES. To the maximum extent permitted by applicable law, in no event shall SYWARE
or its suppliers be liable for any damages whatsoever (including, without limitation, damages for loss of business profits,
business interruption, loss of business information, or any other pecuniary loss) arising out of the use of or inability to use
this SYWARE product, even if SYWARE has been advised of the possibility of such damages. Because some
states/jurisdictions do not allow the exclusion or limitation of liability for consequential or incidental damages, the above
limitation may not apply to you.

This Agreement is governed by the laws of the Commonwealth of Massachusetts.

For Licensee:______________________ For SYWARE:
x_______________________________ x____________________________
Name/Title: _____________________ Seymour A. Danberg, President
Date: _____________________ Date: ______________________

